Crystal Structure Studies of Tetragonal Sodium Tungsten Bronzes, $\mathrm{Na}_{x} \mathrm{WO}_{3} . \mathrm{I}^{2} \mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}{ }^{*}$

FUSAO TAKUSAGAWA and ROBERT A. JACOBSON
Ames Laboratory-ERDA and Department of Chemistry, Iowa State University, Ames, Iowa 50010

Received December 22, 1975

Abstract

The crystal structures of two sodium tungsten bronzes, $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$, have been determined by three-dimensional single-crystal X-ray analysis. They were found to crystallize in the tetragonal space groups $P \overline{4} 2_{1} m(a=12.097, \mathrm{c}=3.754 \AA, Z=10)$ and $P 4 / \mathrm{mbm}(\mathrm{a}=12.150$. $\mathbf{c}=3.769 \AA, Z=10$), respectively. The structures were solved by standard Patterson and Fourier techniques and refined by full-matrix least-squares to final conventional discrepancy indices of 8.9% for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and 8.4% for $\mathrm{Na}_{0,48} \mathrm{WO}_{3}$. In general, the oxygen atoms were found to be either twofold or fourfold disordered, suggesting that the WO_{6} octahedra do not have axes exactly aligned parallel to the crystallographic c-axis. The structure found can be viewed as a composite of two kinds of domain structures. These domain structures would require a doubling of the \mathbf{c}-axis along with selection of new a- and b-axes along the [110] and [$\left.\begin{array}{lll}1 & 10\end{array}\right]$ directions. There exist pentagonal and tetragonal sites in both these sodium tungsten bronzes for sodium atoms occupancy. In $\mathrm{Na}_{x} \mathrm{WO}_{3}, x-0.48$, all the pentagonal sites are filled and 40% of the smaller tetragonal sites are also occupied. As x decreases to 0.33 though, only the pentagonal sites are occupied. A relation between the x value and the $\mathrm{Na}_{x} \mathrm{WO}_{3}$ crystal structures is postulated, extrapolating from the results found in these structure determinations.

Introduction

The sodium tungsten bronzes, $\mathrm{Na}_{x} \mathrm{WO}_{3}$, have been found to form in sodium compositions ranging from $0 \leqslant x \leqslant 1.0$. They were first investigated by Hägg (l) and his collaborators and their crystal structures have been studied using X-ray, neutron, and electronmicrowave methods. For $x=1.0$, one has the perfect perovskite lattice and as the x value decreases, electrons are lost from the conduction band in relation to the sodium atom vacancies. These bronzes have been found to exist

[^0]in triclinic (2), tetragonal (3, 4), and cubic (5) forms as shown in Table I. However, for the most part, accurate crystal-structure determinations have not been carried out. The crystal structure of the tetragonal form was first determined by Magnéli. However, this determination primarily offered evidence as to the tungsten atom positions and left questions as to the correct space group and accurate positions for the oxygen and sodium atoms, as well as possible sites for the sodium atoms and their occupancy.

Recently these sodium tungsten bronzes and other compounds exhibiting a crystal structure of the "tungsten bronze type" have been found to possess unusual electronic character, i.e., ferroelectricity, semiconductivity, and superconductivity. The superconductivity of tetragonal sodium tungsten bronze was first discovered by Raub et al. (6). Recent results

TABLE I
Some $\mathrm{Na}_{\boldsymbol{x}} \mathrm{WO}_{3}$ Crystal Structures

x value	Crystal form	Space group	a	b	c	α	β	γ	Reference
	Triclinic	$?$	8.381	8.162	3.870	90.05	103.11	95.34	$2 a$
0.43^{b}	Triclinic	$P \bar{I}$	7.287	18.474	7.235	95.22	119.64	89.40	$2 b$
0.28	Tetragonal	$P 42_{1}$ or $P 42_{1} m$	12.094	-	3.748	-	-	-	3
0.33	Tetragonal	$P 42{ }_{1} m$	12.097	-	3.754	-	-	-	
0.38	Tetragonal	$P 42_{1}$ or $P 4{ }_{1} m$	12.102	-	3.748	-	-	-	3
0.48	Tetragonal	$P 4 / m b m$	12.150	-	3.769	-	-	-	
0.1	Tetragonal	$P 4 / n m m$	5.248	-	3.895	-	-	-	4
1.0	Cubic	$?$	3.87	-	-	-	-	-	$5 a$
1.0	Cubic	$?$	3.866	-	-	-	-	-	$5 b$
$0.86 \sim 0.59^{c}$	Cubic	$I 3 m 3$	3.866	-	-	-	-	-	$5 c$
0.95	Cubic	$?$	3.857	-	-	-	-	-	$5 d$
0.4	Cubic	$?$	3.817	-	-	-	-	-	$5 d$

${ }^{a} \mathrm{Na}_{2} \mathrm{~W}_{4} \mathrm{O}_{13}$.
${ }^{5} \mathrm{Na}_{6} \mathrm{~W}_{14} \mathrm{O}_{45}$.
${ }^{c}$ Neutron diffraction study. The cell dimensions used were those of ($5 b$).
by Shanks (7) of this Laboratory indicate that the superconducting character of these materials is very greatly influenced by the sodium atom composition. As the x value of $\mathrm{Na}_{x} \mathrm{WO}_{3}$ decreases and approaches 0.2 , the transition temperature for superconductivity is found to increase exponentially. In order to characterize the changes taking place in these materials on the atomic scale better, we decided to carry out accurate three-dimensional X-ray structure analyses of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.

Experimental

The samples of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ were kindly supplied by H. Shanks. Preliminary oscillation and Weissenberg photographs exhibited $D_{4 \mathrm{~h}}-4 / \mathrm{mmm}$ Laue symmetry and no reflections of the superstructure type reported by Magnéli were observed.

The unit cell parameters and their estimated standard deviations were obtained by a least-squares fit (8) to the 2θ values of 14 independent high-angle reflections whose centers were determined by half-height techniques on a previously aligned four circle diffractometer. These, along with other crystal data, are listed in Table II.

For data collection, crystals were selected that were in the shapes of parallelpipeds formed with the (110), ($\overline{1} 10$), and (001) planes as faces. The crystal dimensions were $0.050 \times 0.067 \times 0.068 \mathrm{~mm}$ for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$, and $0.061 \times 0.065 \times 0.069 \mathrm{~mm}$ for $\mathrm{Na}_{0.48^{-}}$ WO_{3}. Data were collected at room temperature using an automated four-circle diffractometer designed and built in the Ames Laboratory. This diffractometer is interfaced to a PDP-15 computer (9) in a real-time mode and is equipped with scintillation counter. For data collection reflected beam graphite-monochromated radiation was used ($\lambda=0.70926$ $\AA)$. Within a 2θ spherc of $70^{\circ}(\sin \theta / \lambda=0.8071$

TABLE II
Crystal Data for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$

Molecular formula	$\mathrm{Na}_{0.3 s} \mathrm{WO}_{3}$	$\mathrm{Na}_{0.4 \mathrm{~s}} \mathrm{WO}_{3}$
Molecular weight	239.43	242.88
Space group	$P 42_{1} m$	$P 4 / \mathrm{mbm}$
Cell dimensions	$\mathrm{a}=12.097(2)$	$12.140(2) \AA$
Z	$\mathrm{c}=3.754(2)$	$3.767(2)$
Z	10	10
Density (calculated)	7.240	$7.267 \mathrm{~g} / \mathrm{cm}^{3}$
Radiation Linear absorption \quad coefficient	$\mathrm{MoK} \alpha$	$\mathrm{MoK} \alpha$
	586.7	$580.8 \mathrm{~cm}^{-1}$

Observed and Calculated Structure Factors for $\mathrm{Na}_{0.3} \mathrm{WO}_{\mathbf{3}}$

\AA^{-1} ），all data in the $h k l$ octant were measured using an ω－scan method．Of the 1467 reflec－ tions examined， 1445 had positive peak inten－ sity for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ ，while the corresponding numbers for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ were 1468 and 1223.

The two compositions were found to con－ form to different space groups．In $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ ， the following systematic absences were ob－ served：$h 00$ when h was odd and $0 k 0$ when k was odd，indicating possible space groups $P 42_{1} 2$ or $P \overline{4} 2_{1} m$ ．On the other hand，for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ ，systematic absences in $h 0 l$ and
$0 k l$ reffections when h and k were odd were observed，implying $P 4 / \mathrm{mbm}, \mathrm{P} 4 \mathrm{bm}$ ，or $P \overline{4} b 2$ as the space group．

Intensity data were corrected for Lorentz－ polarization and absorption effects（10），and the estimated error in each intensity was calculated by

$$
\begin{array}{r}
\sigma_{I}^{2}=C_{T}+2 C_{B}+\left(0.04 C_{T}\right)^{2}+\left(0.04 C_{B}\right)^{2}+ \\
\left(0.04 C_{I}\right)^{2} T_{a}^{2},
\end{array}
$$

where C_{T}, C_{B}, C_{I} ，and T_{a} are the total count， the background count，the net count，and the

TABLE IV
Observed and Calculated Structure Factors for $\mathrm{Na}_{\mathbf{0 . 4 8}} \mathrm{WO}_{3}$

 ご心品

 $\begin{array}{cc}1 & 1 \\ 3 & 1 \\ 3 & 4 \\ 3 & 11 \\ 3 & 93 \\ 3 & 10 \\ 3 & 14 \\ 3 & 15 \\ 3 & 7 \\ 3 & 5 \\ 3 & 13 \\ 3 & 13 \\ 3 & 12 \\ 3 & 4 \\ 3 & 11 \\ 3 & 8 \\ 4 & 32 \\ 4 & 6 \\ 4 & 5 \\ 4 & 9 \\ 4 & 12 \\ 4 & 11 \\ 4 & 7 \\ 4 & 11 \\ 4 & 15 \\ 4 & 14 \\ 4 & 10 \\ 4 & 12 \\ 4 & 11 \\ 4 & 13 \\ 4 & 5 \\ 4 & 4 \\ 4 & 5 \\ 4 & 4 \\ 5 & 3 \\ 5 & 1\end{array}$

TABLE V
Final Positional and Thermal Parameters ${ }^{a}$ and Their Estimated Standard Deviations ${ }^{b}$ for $\mathrm{Na}_{0.33}$ WO $_{3}{ }^{c}$

Atom	G	x	y	z	$B_{\text {iso }}$
W1	1.0	0.0777(1)	0.2063(1)	0.5087(5)	-
W2	1.0	0.0	0.5	0.4550(6)	-
Na	0.825	0.331(2)	0.168	-0.007(19)	5.4(7)
O1A	0.25	0.047	0.211	0.0	5.0
O1B	0.25	0.063	0.172	0.0	5.0
O1C	0.25	0.109	0.211	0.0	5.0
O1D	0.25	0.063	0.234	0.0	5.0
02	0.5	$-0.040(4)$	0.460	$-0.040(27)$	7.2(14)
O3A	0.5	0.142(4)	0.065(4)	0.391 (9)	$-0.7(5)$
O3B	0.5	0.142(4)	0.068(4)	0.563(11)	$1.0(8)$
O4A	0.5	0.214(3)	0.286	0.467(10)	-0.5(7)
O4B	0.5	0.230(4)	0.270	0.568(14)	0.1(7)
O5A	0.5	0.005(4)	0.350(4)	0.405(11)	-0.3(5)
O5B	0.5	-0.009(4)	0.356(4)	0.560(12)	0.6(7)
Atom	B_{11}	$B_{22} \quad B_{33}$	B_{12}	B_{13}	B_{23}
W1	$0.00161(6)$	$0.00168(6) \quad 0.0101(6)$	$0.00003(5)$	$0.0004(3)$	$0.000(3)$
W2	0.00149(8)	0.00149 0.015(2)	0.0	0.0	0.0

${ }^{a}$ The parameters with no estimated standard deviation are not refined.
${ }^{b}$ In this and subsequent tables, the values in parentheses denote the estimated standard deviations in the last digits.
${ }^{c}$ Anisotropic thermal parameters are of the form of $\exp \left(-B_{11} h^{2}-\cdots-2 B_{12} h k-\cdots\right)$.

TABLE VI
Final Positional and Thermal Parameters and Their Estimated Standard Deviations for Na $\mathrm{m}_{0.48} \mathrm{WO}_{3}$

Atom	G	x	y	z	$B_{\text {iso }}$
W1	1.0	0.0772(1)	0.2065(1)	0.5	-
W2	1.0	1.0	0.5	0.5	-
Na 1	1.0	0.331(3)	0.169	0.0	3.8(9)
Na 2	0.4	0.0	0.0	0.0	3.1(11)
O1	1.0	0.084(4)	0.209(4)	0.0	4.6(11)
02	0.5	-0.013(4)	0.487	0.0	3.4(15)
03	0.5	$0.135(3)$	0.067(3)	0.459(13)	0.8(6)
04	0.5	0.219(3)	0.281	0.474(24)	1.2(7)
05	0.5	$-0.004(3)$	0.348(3)	0.435(10)	1.0(6)
Atom	B_{11}	$B_{22} \quad B_{33}$	B_{12}	B_{13}	B_{23}
W1	0.00105(9)	$0.00097(9) \quad 0.0261(1)$	-0.00004(6)	0.0	0.0
W2	0.0008(1)	0.0008(9) $0.043(3)$	0.0	0.0	0.0

TABLE VII

Metal-Oxygen Distances and Oxygen-Metal-Oxygen Angles for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ (I) and $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ (II)

	Symmetry ${ }^{\text {a }}$	(I)	(II)		Symmetry	(I)	(II)
W1-O1A	$(1,1)$	$1.95(6)$	1.89(5)	Na1-O1A	$(1,9)$	3.00(7)	3.04(6)
W1-O1A	$(1,2)$	1.88(6)		Na1-O1C	$(1,1)$	2.74(7)	
W1-O1B	$(1,1)$	1.96 (6)		Na1-O2	$(1,9)$	2.21(7)	2.68 (6)
W1-O1B	$(1,2)$	1.90 (6)		Na1-O3A	$(1,2)$	3.00 (6)	3.19(6)
W1-O1C	$(1,1)$	$1.95(6)$		$\mathrm{Na} 1-\mathrm{O} 4 \mathrm{~A}$	$(1,1)$	2.69 (6)	2.62(6)
W1-O1C	$(1,2)$	1.88(6)		$\mathrm{Na1-O4B}$	$(1,1)$	2.77(6))	2.62 (6)
W1-O1D	$(1,1)$	1.95(6)		Na1-O4A	$(1,3)$	2.81(6)	$2.76(6)$
W1-O1D	$(1,2)$	1.88(6)		$\mathrm{Na} 1-\mathrm{O} 4 \mathrm{~B}$	$(1,3)$	$2.36(6)$)	2.76 (6)
W1-O3A	$(1,1)$	1.93(5)	1.84(4)	Na1-O5A	$(1,9)$	2.58(6)	2.60 (6)
W1-O3B	$(1,1)$	$1.86(5)$)		Nal-O5B	$(1,9)$	$2.85(6)$)	
W1-O3A	$(1,4)$	1.93(5)	1.96(4)	Na1-O5B	$(1,10)$	2.58(6)	2.58(6)
W1-O3A	$(1,4)$	1.95(5)		$\mathrm{Na} 2-\mathrm{O} 1$	$(1,1)$	-	2.74 (6)
W1-04A	$(1,1)$	1.92(4)	1.95(4)	$\mathrm{Na} 2-\mathrm{O} 3$	$(1,1)$	-	2.52(6)
W1-O4B	$(1,1)$	2.01(5)		$\mathrm{Na} 2-\mathrm{O} 3$	$(1,10)$	-	2.74 (6)
W1-O5A	$(1,1)$	$1.99(5)$	2.00(4)				
W1-O5B	$(1,1)$	$2.10(5)$)					
W2-O2	$(1,1)$	1.98(6)	1.90(5)				
W2-O2	$(1,3)$	2.02(6)					
W2-O5B	$(1,1)$	1.79(5)	1.86(4)				
W2-O5A	$(1,1)$	1.83(5)					
O1A-W1-O1C	$(2,1,1)$	177(3)	175(2)	O1C-W1-O4A	$(1,1,1)$	84(2)	90(2)
O1A-W1-O3A	$(2,1,1)$	83(2)	85(2)	O1C-W1-05B	$(1,1,1)$	89(2)	83(2)
O1A-W1-04A	$(2,1,1)$	94(2)	84(2)	O1C-W1-O3A	$(1,1,4)$	$90(2)$	88(2)
O1A-W1-O5B	$(2,1,1)$	88(2)	97(2)	O3A-W1-O4A	$(1,1,1)$	95(2)	95(2)
O1A-W1-O3A	$(2,1,4)$	92(2)	97(2)	O3A-W1-O5B	$(1,1,1)$	170(2)	172(2)
O1C-W1-O3A	(1, 1, 1)	100(2)	95(2)	O3A-W1-O3A	$(1,1,4)$	93(2)	87(2)
O4A-W1-O5B	(1, 1, 1)	90(2)	92(2)	O3B-W1-O4A	(1, 1, 1)	96(2)	95(2)
O4A-W1-03A	$(1,1,4)$	171(2)	178(2)	O3B-W1-O3A	$(1,1,4)$	89(2)	86(2)
O5B-W1-O3A	$(1,1,4)$	83(2)	86(2)	O4A-W1-O5A	$(1,1,1)$	86(2)	92(2)
O1A-W1-O3B	$(1,1,1)$	90(2)	85(2)	O5A-W1-O3A	$(1,1,4)$	90(2)	87(2)
O1A-W1-O4B	$(1,1,1)$	93(2)	90(2)	O1B-W1-O3A	$(2,1,1)$	94(2)	95(2)
O1A-W1-O5A	$(1,1,1)$	94(2)	97(2)	O1B-W1-O4B	$(2,1,1)$	94(2)	90(2)
O1A-W1-O3B	$(1,1,4)$	88(2)	88(2)	O1B-W1-O5B	$(2,1,1)$	93(2)	83(2)
O1C-W1-O3B	$(2,1,1)$	93(2)	95(2)	O1B-W1-O3B	$(2,1,4)$	88(2)	88(2)
O1C-W1-O4B	$(2,1,1)$	85(2)	84(2)	O1D-W1-O3A	$(1,1,1)$	88(2)	85(2)
O1C-W1-O5A	$(2,1,1)$	82(2)	83(2)	O1D-W1-O4B	$(1,1,1)$	97(2)	84(2)
O1C-W1-O3B	$(2,1,4)$	93(2)	97(2)	O1D-W1-O5B	$(1,1,1)$	84(2)	97(2)
O3B-W1-O4B	$(1,1,1)$	87(2)	95(2)	O1D-W1-O3B	$(1,1,4)$	81(2)	97(2)
O3B-W1-O5A	$(1,1,1)$	175(2)	172(2)	O3A-W1-04B	$(1,1,1)$	90(2)	95(2)
O3B-W1-O3B	$(1,1,4)$	92(2)	86(2)	O3A-W1-O3B	$(1,1,4)$	89(2)	87(2)
O4B-W1-O5A	$(1,1,1)$	95(2)	92(2)	O4B-W1-O5B	$(1,1,1)$	97(2)	92(2)
O4B-W1-O3B	$(1,1,4)$	178(2)	178(2)	O5B-W1-O3B	$(1,1,4)$	85(2)	86(2)
O5A-W1-O3B	$(1,1,4)$	85(2)	87(2)	O2-W2-O2	$(1,1,3)$	180(-)	180(-)
O1B-W1-O1D	$(1,1,2)$	169(3)	175(2)	O2-W2-O5B	$(1,1,1)$	87(2)	87(2)
O1B-W1-O3B	$(1,1,1)$	88(2)	95(2)	O2-W2-O5A	$(1,1,8)$	98(2)	93(2)
O1B-W1-O4A	$(1,1,1)$	96(2)	84(2)	O2-W2-O5B	$(3,1,1)$	92(2)	93(2)
O1B-W1-O5A	$(1,1,1)$	87(2)	83(2)	O2-W2-O5A	$(3,1,8)$	82(2)	87(2)
O1B-W1-O3A	$(1,1,4)$	91(2)	97(2)	O5B-W2-O5B	$(1,1,7)$	80(2)	86(2)

Table VII (continued)

	Symmetry	(I)	(II)		Symmetry	(I)	(II)
O1D-W1-O3B	$(2,1,1)$	$95(2)$	$85(2)$	O5B-W2-O5A	$(1,1,8)$	$171(2)$	$(180-)$
O1D-W1-O4A	$(2,1,1)$	$94(2)$	$90(2)$	O5B-W2-O5A	$(1,1,6)$	$93(2)$	$94(2)$
O1D-W1-O5A	$(2,1,1)$	$90(2)$	$97(2)$	O5A-W2-O5A	$(6,1,8)$	$93(2)$	$94(2)$
O1D-W1-O3A	$(2,1,4)$	$78(2)$	$88(2)$				

[^1]transmission factor, respectively. The factor 0.04 represents an estimate of nonstatistical error. The estimated deviations in the structure factors were calculated by the finite-difference method (11). Of the 1445 reflections in $\mathrm{Na}_{0.33^{-}}$ $\mathrm{WO}_{3}, 916$ were considered observed ($>4 \sigma_{t}$). The corresponding numbers for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ were 1223 and 882 .

Structure Determination and Refinement

The approximate positions of the two symmetry-independent tungsten atoms from both compounds were easily obtained from analyses of the respective sharpened threedimensional Patterson maps (12). A comparison of these positions shows them to be almost identical in both structures. Since the z coordinates of the two tungsten atoms in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ are very close to $z=\frac{1}{2}$, the Fourier syntheses computed from these positions using either the space group $P 42_{1}{ }^{2}$ or $P \overline{4} 2_{1} m$ show pseudosymmetry as if the space group were $P 4 / \mathrm{mbm}$. In order to obtain more accurate initial coordinates of the tungsten atoms, two-dimensional Patterson maps were calculated using first of all the $h 0 l$ reflections, and then only $h 0 l$ reflections with $h=2 n+1$. Consideration of the differences between these two maps suggested that the more suitable space group was $P \overline{4} 2_{1} m$ rather than $P 42_{1} 2$ and that the z coordinate of one tungsten atom, the one on the twofold axis parallel to c, deviated slightly from $\frac{1}{2}$. As a result, the initial tungsten atomic positions were determined as follows: $W(1)(0.08,0.21$, $0.5)$ and $W(2)(0.0,0.5,0.45)$. In the case of $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$, Patterson analysis indicated $P 4 / \mathrm{mbm}$ as the appropriate space group.

A study of the electron density and difference synthesis in both compounds obtained by using least-squares refined tungsten parameters indicated that all oxygen atoms at $z \approx \frac{1}{2}$ could be best represented by replacing each with two half oxygen atoms separated along the c-axis by $0.6 \AA$. In $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$, the two oxygen atoms at $z \approx 0$ were also disordered to two- or fourfold sites, but only one oxygen atom of the $z \approx 0$ type was twofold disordered in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.

There are two possible sites for the sodium atoms. One is of a distorted pentagonal geometry in which each sodium would be surrounded by five oxygen atoms, while the other has four closest oxygen contacts. In $\mathrm{Na}_{0.33} W O O_{3}$ a difference electron density synthesis demonstrated that the sodium atoms reside only in the pentagonal site. Indeed any sodium atom in the tetragonal site would find itself in very close proximity to oxygen atoms (1.8 to $2.1 \AA$). In $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$, with its somewhat larger tetragonal site, sodium atoms were found to be located in both types of sites. However, the electron density of the pentagonal site was much larger than that of the tetragonal site. Occupancy factors were refined using several thermal parameters to reduce correlation effects. This procedure strongly suggested that the pentagonal sites were completely filled while only approximately 40% of the tetragonal sites were occupied.

The atomic positions were first refined isotropically via a full-matrix least-squares technique (13) minimizing the function $\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1.0 / \sigma_{F}^{2}$ to conventional discrepancy indices of $R=11.8 \%$ for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $R=11.5 \%$ for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.

In $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$, the oxygen atom that was distributed over four sites did not converge to reasonable positions, probably due to the small amount of electron density associated with each site and correlation effects due to their close proximity to one another; therefore, these positions were fixed from consideration of the difference synthesis map, and isotropic thermal parameters were estimated. Anisotropic thermal parameters were introduced for the tungsten atoms, and the R indices dropped to 11.0% for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and 10.8% for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$. Agreement with space group equivalent reflections were then checked. In the pairs with $|F(h k l)-F(k h l)|>2.5\left(\sigma_{F}(h k l)\right.$ $\left.+\sigma_{\mathrm{F}}(k h l)\right), \sim 10 \%$ of the data and particularly at large θ, a reflection which had larger residual from the calculated structure factor than its symmetry equivalent partner was eliminated from the data set. Successive refinements using this new data set reduced the R indices to 9.9% for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and 9.6% for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$. It was also noted that for large reflections the calculated structure factors had larger magnitudes than the observed structure factors, indicating that extinction was making an appreciable effect. Therefore, a correction for extinction was made by Zachariasen's method (14), the values of the extinction parameter being $3.8(5) \times 10^{-4}$ for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $3.1(4)$ $\times 10^{-4}$ for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ on an absolute scale. The possibility of appreciable anisotropic extinction was also checked but such effects did seem prevalent here. Also the structure factors for $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ were computed for the enantimorph image in order to check for a significant absolute configuration effect. However, no significant difference was recognizable.
The final agreement factors obtained were: $R=\Sigma| | F_{0}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|=0.089\left(\mathrm{Na}_{0.33} \mathrm{WO}_{3}\right)$ and $0.084\left(\mathrm{Na}_{0.48} \mathrm{WO}_{3}\right), R_{w}=\left[\sum\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\right.$ $\left.\sum w\left|F_{0}\right|^{2}\right]^{1 / 2}=0.116\left(\mathrm{Na}_{0.33} \mathrm{WO}_{3}\right)$ and 0.119 $\left(\mathrm{Na}_{0.48} \mathrm{WO}_{3}\right)$. Several oxygen atoms in $\mathrm{Na}_{0.33^{-}}$ WO_{3} showed slightly negative thermal parameters as is indicated in Table V , but this is not considered unusual in view of the disordering of these atoms. The atomic scattering factors used were those of Hanson et al. (15), modified for the real and imaginary parts of anomalous dispersion (16). The observed and calculated
structure factors are listed in Tables III and IV, and the fractional coordinates and thermal parameters are listed in Tables V and VI, respectively.

Results and Discussion

The tungsten-oxygen distances and associated angles are listed in Table VII. The distances in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ range from 1.79(5) \AA for $\mathrm{W} 2-\mathrm{O} 5 \mathrm{~B}$ to $2.10(5) \AA$ for $\mathrm{W} 1-\mathrm{O} 5 \mathrm{~B}$. The corresponding values in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ are 1.84(4) \AA for W1-O3 and $2.00(4) \AA$ for W1-O5. Such a variation in distances is not unexpected due to the poor determination of the oxygen positions caused by disordering.

An axis of the WO_{6} octahedron is not strictly parallel with the c-axis, and the angle of tilt is greater in the case of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ than in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$, namely 14° compared to 11°. A similar situation has been found in several compounds previously determined with crystal structure of the "tungsten-bronze" type; for example in $\mathrm{Ba}_{(4 \pm x)} \mathrm{Na}_{(2-2 x)} \mathrm{Nb}_{10} \mathrm{O}_{30}$ (17), the angle was found to range from 4.9° to 8.2°. The tungsten atoms in the two independent WO_{6} octahedra in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ are displaced by $0.201 \AA$ relative to each other in the c direction, but in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ they have identical c coordinates. The $\mathrm{Na}-\mathrm{O}$ distance in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ ranges from $2.21(9) \AA$ for $\mathrm{Na}-\mathrm{O} 2$ to $3.00(9) \AA$ for $\mathrm{Na}-\mathrm{O} 1 \mathrm{~A}$. In $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ on the other hand, the corresponding values are 2.52(6) \AA for $\mathrm{Na} 2-\mathrm{O} 3$ and 3.19(6) \AA for $\mathrm{Na} 1-\mathrm{O} 3$. Also in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$, one oxygen located approximately at $z=0$ is disordered over four sites, while the corresponding oxygen atom in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ is not significantly disordered, although its thermal parameter is appreciably larger than the others. All evidence therefore points to the crystal structure of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ being more distorted than that of $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.

The WO_{6} octahedra are linked together via sharing a corner. This process produces three kinds of interstitial sites in the framework. These are pentagonal, tetragonal, and trigonal in nature, each site having oxygen atoms as nearest neighbors. From consideration of the sodium and oxygen ionic radii, it is found to be possible to locate the sodium atoms only on the
first two types of sites. However, the volume of the pentagonal site is much larger than that of the tetragonal site, the radius of the latter being somewhat shorter than the sum of ionic radii. Hence, it would be expected that sodium atoms would first fill the pentagonal sites and
subsequently, the tetragonal ones. In the crystal structure of $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$, sodium atoms are found in both types of sites with occupancy of 1.0 for the pentagonal site and 0.4 for the tetragonal one. On the other hand, in the structure of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ it is only the pentag-

Fig. 1. (a) A stereographic drawing of one of two possible domain structures of $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ as deduced from this study. The c-axis is coincident with a 4 -axis. (b) An alternate illustration of the first domain structure emphasizing the positions of the oxygen atoms. Those indicated by unfiled circles are above the $z=\frac{1}{2}$ plane, and those by filled circles are below. (c) A stereographic drawing of the unit cell illustrating the positions of the sodium ions in the pentagonal sites.

(a)

(b)

Fig. 2. (a) A stereographic drawing of the second domain structure. The c-axis is coincident with a 4 -axis. (b) An alternate illustration of the second domain structure. The labeling of the atoms is identical to that of Fig. b.

Fig. 3. Disordered WO_{6} octahedra for $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.
onal sites that are filled with an occupancy of 0.825 .

The disordered arrangement found in $\mathrm{Na}_{\text {o. } 33} \mathrm{WO}_{3}$ may be viewed as the superposition of two kinds of ordered arrangements as illustrated in Figs. 1 and 2 (18). If one assumes that the ordered model still possesses the $\overline{4}$-axis, then a fourfold axis is produced in the center of the unit cell. The disordered arrangement found could then be obtained by superimposing a second ordered cell shifted by one-half in the \mathbf{a} and \mathbf{b} directions. Thus, the disordered cell could be viewed as a random
combination of these two kinds of domain structures, or alternately, might be viewed via a twinning model whose twinning plane is the (001) and the origin of one domain structure coincides with the point $(0.5,0.5,0.0)$ of the other domain structure. It is impossible to distinguish these two possibilities by consideration of the final result. In any case a completely ordered arrangement leads to the doubling of the \mathbf{c}-axis and selection of new a- and b-axis along the [110] and [$\overline{1} 10$] directions, respectively. A similar situation would occur in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$ (Fig. 3).

Fig. 4. The relation between the x-value in $\mathrm{Na}_{x} \mathrm{WO}_{3}$ and their crystal structures. (a) $x=0.6$. Pentagonal (P) and tetragonal (T) sites are filled up Na atoms. $P=$ $1.0, T=1.0$. Space group is $P 4 / \mathrm{mbm}$. (b) $0.4<x<0.6$. Sodium vacancies increase in tetragonal site. $P=1.0$, $T=5(x-0.4)$. Space group is $P 4 / m b m$. (c) $x=0.4$. Tetragonal site is perfectly empty. $P=1.0, T=0.0$. Space group is $P \overline{4} 2_{1} m$. (d) $0.2<x<0.4$. Sodium vacancies increase in pentagonal tunnel at intervals of 1. $P=2.5 x, T=0.0$. Space group is $P 4{ }_{1} m$.

As noted earlier, when the x value in $\mathrm{Na}_{x} \mathrm{WO}_{3}$ is in the range of $0.6 \geqslant x \geqslant 0.2$, the bronze has been reported to crystallize in the tetragonal I form. Our work has shown that this tetragonal form really consists of two different tetragonal space groups, which we will term tetragonal I and tetragonal I'. One can view the changes that take place as the x value is decreased as follows (see Fig. 4): at $x=0.6$, one can assume that all the pentagonal and tetragonal sites are completely filled with sodium atoms. In the region of $0.6 \geqslant x \geqslant$ 0.4 , the appropriate space group is $34 / \mathrm{mbm}$ with the two independent WO_{6} octahedra having their centers on the same plane. As the x value is decreased, sodium vacancies occur in the tetragonal sites and the angle between the c -axis and the octahedron axis increases with decreasing x. The unit cell parameters all decrease. At $x=0.4$, all the sodium atoms are
depleted from the tetragonal sites. A further decrease in x causes a space group change from $P 4 / m b m$ to $P \overline{4} 2_{1} m$, and sodium vacancies begin to appear in the pentagonal tunnel along with a further increase in the angle between the c -axis and the closest octahedron axis. This increase in the angle produces some abnormally short $\mathrm{Na}-\mathrm{O}$ distances in the pentagonal tunnel at intervals of one unit cell repeat in the c-direction. (This distance is $2.21(9) \AA$ in $\mathrm{Na}_{0.33} \mathrm{WO}_{3}$ and $2.67(7) \AA$ in $\mathrm{Na}_{0.48} \mathrm{WO}_{3}$.) At the same time, the two symmetry independent tungsten atoms move slightly apart in the c-direction. These distortions coupled with a further decrease in cell dimensions partially compensate for the sodium site vacancies. It is therefore reasonable to assume that those sites with the abnormally short sodium oxygen distances are the most likely ones where vacancies will occur. At $x=0.2$ sodium atoms exist only in the pentagonal tunnel at intervals of one c direction repeat distance. As the x value is decreased below 0.2 , there is a phase transition from the tetragonal I^{\prime} type to tetragonal II with space group $P 4 / n m m$ (4).

References

I. G. HäGG, Nature (London) 135, 874 (1935); G. HÄGG, Z. Phys. Chem. 29B, 192 (1935).
2. (a) Y. Bouiutaun, Rull. Soc. Fr. Mineral. Cristal. logr. 91, 292 (1968). (b) H. F. Franzen, H. R. Shanks, and B. H. W. S. DeJong, Nat. Bur. Stand. (U.S.), Spec. Publ. No. 364, p. 41 (1972).
3. A. Magneli, Arkiv Kemi. 1, 269 (1949).
4. A. Magneli, Acta Chem. Scand. 5, 670 (1951).
5. (a) E. A. Nikitina and A. S. Kokurina, Zhur. Obshchei Khim. 21, 1940 (1951). (b) B. W. Brown and E. Banks, J. Amer. Chem. Soc. 76, 963 (1954), (c) M. Atoil and R. E. Rundle, J. Chem. Phys. 32. 627 (1960). (d) R. A. Zvinchuk and G. P. Ovcharova, Fiz. Khim. 150 (1971).
6. Ch. J. Raub, A. R. Sweedler, M. A. Jensen, S. Broadston, and B. T. Matthias, Phys. Rev. Letters 13, 746 (1964).
7. H. R. Shanks, Solid State Comm. 15, 753 (1974).
8. D. E. Williams, "LCR-2, A Fortran Lattice Constant Refinement Program", U.S. Atomic Energy Commission Report IS-1052, Iowa State University and Institute for Atomic Research, Ames, Iowa (1964).
9. R. A. Jacobson, "An Algorithm for Automatic Indexing and Bravais Lattice Selection. The

Programs BLIND and ALICE." U.S. Atomic Energy Commission Report IS-3469, Iowa State University and Institute for Atomic Research, Ames, Iowa (1974).
10. (a) N. W. Alcuck, presented in part at the International summer school on Crystallographic Computing, Ottawa, Canada (Aug. 1969). (b) J. D. Scott, personal communication, Queen's University, Kingston, Ontario, Canada (1971).
11. S. L. Lawton and R. A. Jacobson, Inorg. Chem. 7, 2124 (1968).
12. C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the Programs, ALFF, ALFFDP, ALFFPROJ, ALFFT, and FRIEDEL," U.S. Atomic Energy Commission Report IS-2625, Iowa State University and Institute for Atomic Research, Ames, Iowa (1971).
13. W. R. Busing, K. O. Martin, and H. A. Levy, "ORFLS, A Fortran Crystallographic Least-
squares Program," U.S. Atomic Energy Commission Report ORNL-TM-350, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1962).
14. W. H. Zachriasen, Acta Crystallogr. 16, 1139 (1963).
15. H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Crystallogr. 17, 1040 (1964).
16. D. H. Templeton, in "International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England (1962).
17. P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 50, 4352 (1969)
18. C. K. Johnson, "OR TEP-II : A Fortran ThermalEllipsoid Plot Program for Crystal Structure Illustrations," U.S. Atomic Commission Report ORNL-3794 (2nd revision with Supplemental Instructions), Oak Ridge National Laboratory, Oak Ridge, Tenn. (1970).

[^0]: * Prepared for the U.S. Energy Research and Development Administration under Contract W-7405-eng- 82 .
 By acceptance of this article, the publisher and/or
 recipient acknowledges the U.S. Government's right
 By acceptance of this article, the publisher and/or
 recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

[^1]: ${ }^{a}$ Symmetry codes: $1=(x, y, z) ; 2=(x, y, z+1) ; 3=(x, y, z-1) ; 4=(-y, x, 1-z) ; 5=(-x, 1-y, z+1) ;$ $6=\left(\frac{1}{2}-y, \frac{1}{2}-x, z\right) ; 7=\left(y-\frac{1}{2}, x-\frac{1}{2}, z\right) ; 8=(-x, 1-y, z) ; 9=(y,-x,-z) ; 10=(y,-x, 1-z)$.

